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1 Introduction to Michigan’s Value-Added Reporting

The term “value-added” refers to a statistical analysis usedto measure students’ academic growth.
Conceptually and as a simple explanation, value-added or growth measures are calculated by comparing
the exiting achievement to the entering achievement for a group of students. Although the concept of
growthis easyto understand, the implementation of a growth model is more complex.

First, thereis not just one growth model; there are multiple growth models depending on the
assessment, students included in the analysis, and level of reporting (district, school, or teacher). For
each of these models, there are business rules to ensure the growth measures reflect the policies and
practices selected by the State of Michigan.

Second, in order to provide reliable growth measures, growth models must overcome non-trivial
complexities of working with student assessment data. For example, students do not have the same
entering achievement, students do not have the same set of prior test scores, and all assessments have
measurement error because they are estimates of student knowledge. EVAAS growth models have been
in use and available to educators in states since the early 1990s. These growth models were among the
firstin the nation to use sophisticated statistical models that addressed these concerns.

Third, the growth measures are relative tostudents’ expected growth, which is in turn determined by
the growththat is observed within the actual population of Michigan test-takers ina subject, grade, and
year. Interpreting the growth measures in terms of their distance from expected growth provides a
more nuanced, and statistically robust, interpretation.

With these complexities in mind, the purpose ofthis document is to guide you through Michigan’s
value-added modeling based on the statistical models, businessrules, policies, and practicesselected
by the State of Michigan and currently implemented by EVAAS. This document includes details and
decisions in the following areas:

e Conceptualand technical explanations of analytic models
e Definition of expected growth

o Classifying growthinto categories for interpretation

e Explanation of district, school, and teacher composites

e |nput data

e Businessrules

The State of Michigan has provided EVAAS growth measures to Michigandistricts, schools, and teachers
since 2018. Teacher reporting is made available to any districts that wanted to opt in through the
Michigan Data Hub (MiDataHub) project.

These reports are delivered through the EVAAS web application available at http://mi.sas.com. Although
the underlying statistical models and business rules supporting these reports are sophisticated and
comprehensive, the web reports are designed to be user-friendly and visual so that educators and
administrators can quickly identify strengths and opportunities for improvement and then use these
insights to inform curricular, instructional, and planning supports.
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Of particular note for the 2020-21 reporting is that, in spring 2020, the COVID-19 pandemic required
schools to close early and cancel statewide summative assessments. As a result, scores are not available
for the M-STEP, PSAT, SAT and end-of-year MAP assessmentsbased onthe 2019-20 school year, and the
2020-21 EVAAS reporting does not include these 2019-20 test scores. More details about how this
year’s EVAAS growth measures were calculated to accommodate the missing year of data are provided
in Sections 2.2.4.4and 2.3.3.1.
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2 Statistical Models

2.1 Overview of Statistical Models

The conceptual explanation of value-added reporting is simple: compare students’ exiting achievement
with their entering achievement over two points in time. In practice, however, measuring student
growthis more complex. Students start the school year at different levels of achievement. Some
students move around and have missing test scores. Students might have “good” test days or “bad” test
days. Tests, standards, and scales change over time. A simple comparison of test scores from one year to
the next does not incorporate these complexities. However, a more robust value-added model, suchas
the one used in Michigan, can account for these complexities and scenarios.

Michigan’s value-added models offer the following advantages:

e Themodels use multiple subjects andyears of data. This approach minimizes the influence of
measurement error inherent in all academicassessments.

e Themodels can accommodate studentswith missing test scores. This approach means that
more students are included in the model and representedin the growth measures.
Furthermore, because certain students are more likely to have missing test scores than others,
this approach provides less biased growth measures than growth models that cannot
accommodate student with missing test scores.

e Themodels can accommodate tests on different scales. This approach gives flexibility to
policymakers to change assessmentsas needed without a disruption in reporting. It permits
more tests toreceive growth measures, particularlythose that are not tested everyyear.

e Themodels can accommodate teamteaching or other shared instructional practices. This
approach provides a more accurate and precise reflection of student learning among
classrooms.

These advantages provide robust and reliable growth measures todistricts, schools, and teachers. This
means that the models provide valid estimates of growth given the common challenges of testing data.
The models also provide measures of precision along with the individual growth estimates takinginto
account all of this information.

Furthermore, because this robust modeling approach uses multiple years of test scores for each student
and includes students who are missing test scores, EVAASvalue-added measures typically have very low
correlations with student characteristics. It is not necessaryto make direct adjustments for student
socioeconomic status or demographic flags because each student serves as their own control. In other
words, to the extent that background influences persist over time, these influences are already
representedin the student’s data. As a 2004 study by The Education Trust stated, specifically with
regardto the EVAAS modeling:

[11f a student’s family background, aptitude, motivation, or any other possible factor has
resultedin low achievement and minimal learning growth in the past, allthat is taken into
account when the system calculates the teacher’s contributionto student growthin the present.

Source: Carey, Kevin. 2004. “The Real Value of Teachers: Using New Information about Teacher
Effectiveness to Close the Achievement Gap.” Thinking K-16 8(1):27.
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In other words, although technically feasible, adjusting for student characteristics in sophisticated
modeling approaches is typically not necessaryfrom a statistical perspective, andthe value-added
reporting in Michigan does not make any direct adjustments for students’ socioeconomic/demographic
characteristics. Through this approach, the Michigan Department of Education does not provide growth
models to educators based on differential expectations for groups of students based on their
backgrounds.

Based on Michigan’s state assessment program, there are two approaches to providing district, school,
and teacher growth measures.

e Gain model (also known as the multivariate response modelor MRM)is used for tests givenin
consecutive grades, suchas M-STEP Mathand ELA in grades 3—7 to provide growth measuresin
grades 4—7 or MAP Math and Readingin grades 1-8 to provide growth measuresingrades 1-8.
The gainmodel is alsoused to measure growth from grade 7 to 8 with the PSAT 8/9 in grade 8.

e Predictive model (also known as univariate response modelor URM)is used when a test is
given in non-consecutive grades or when performance from previous tests is usedto predict
performance on another test. This includes M-STEP Science and Social Studies assessments, SAT,
and PSAT for grades 9and 10.

There is another model, which is similar to the predictive model except thatit is intended as an
instructional tool for educators serving students who have not yet taken anassessment.

e Projection modelis used for all assessmentsand provides a probability of obtaining a particular
score or higher on a given assessment for individual students.

The following sections provide technical explanations of the models. The online Help within the EVAAS
web application is available at https://mi.sas.com, andit provides educator-focused descriptions of the
models.

In spring 2020, the COVID-19 pandemic required schools to close early and cancel statewide summative
assessments. As a result, statewide scores are not available for Michigan’s M-STEP, PSAT 8/9, PSAT 10
and SAT exams based on the 2019-20 school year and the end-of-year MAP assessments.
Accommodations for the missing year of data are described for the gain model in Section 2.2.4.4andfor
the predictive model in Section 2.3.3.1.

2.2 Gain Model

2.2.1 Overview

The gain model measures growth between two points in time for a group of students; this is the case for
tests givenin consecutive grades such M-STEP Math and ELA in grades 3—7 to provide growth measures
in grades 4-7 or MAP Math and Reading in grades 1-8 to provide growth measuresin grades 1-8. The
gain model is alsoused to measure growth from grade 7 to 8 with the PSAT 8/9 in grade 8. More
specifically, the gain model measures the change in relative achievement foragroup ofstudents
based on the statewide or normed achievement fromone pointin time to another. For state
summative assessments, growth s typically measured from one year to the next, using the available
consecutive grade assessments. For MAP assessments, growth is measured from the beginning of the
year to the end of the year within the same grade. Due to suspended assessmentsinthe spring of the
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2019-20 school year, the MAP assessments measure growth from the beginning of the yearto the
middle of the year within the same grade for the 2019-20 reporting.

Expected growth means that students maintained their relative achievement among the population of
test-takers, and more details are available in Section 3.

There arethree separate analyses for EVAAS reporting based on the gain model: one each for districts,
schools, and teachers. The district and school models are essentially the same; they perform well with
the large numbers of students characteristic of districts and most schools. The teacher model uses a
version adaptedto the smaller numbers of students typically found in teachers’ classrooms.

In statistical terms, the gain model is known as a linear mixed model and can be further describedas a
multivariate repeated measures model. These models have been used for value-added analysis for
almost three decades, but their use in other industries goes back much further. These models were
developed to usein fields with very large longitudinal data sets that tend to have missing data.

Value-added experts consider the gain model to be among one of the most statistically robust and
reliable models. The references below include foundational studies by experts from RAND Corporation,
a non-profit research organization:

e Onthe choice of a complexvalue-added model: McCaffrey, Daniel F., andJ.R. Lockwood. 2008.
“Value-Added Models: Analyticlssues.” Prepared for the National Research Counciland the
National Academy of Education, Board on Testing and Accountability Workshop on Value-Added
Modeling, Nov. 13-14, 2008, Washington, DC.

e Onthe advantages ofthe longitudinal, mixed modelapproach: Lockwood, J.R. and Daniel
McCaffrey. 2007. “Controlling for Individual Heterogeneityin Longitudinal Models, with
Applications to Student Achievement.” Electronic Journal of Statistics 1:223-252.

e Onthe insufficiency of simple value-added models: McCaffrey, Daniel F., B. Han, and J.R.
Lockwood. 2008. “From Data toBonuses: A Case Study of the Issues Related to Awarding
Teachers Payon the Basis of the Students' Progress.” Presented at Performance Incentives:
Their Growing Impact on AmericanK-12 Education, Feb. 28-29, 2008, National Center on
Performance Incentives at Vanderbilt University.

2.2.2 Why the Gain Model is Needed

A common question is why growth cannot be measured with a simple gain model that measures the
difference between the current year’s scores and prior year’s scores for a group of students. The
example in Figure 1 illustrates why a simple approach is problematic.

Assume that 10 students are given a test in two different years with the results shown in Figure 1. The
goal is to measure academic growth (gain) from one year tothe next. Two simple approaches are to
calculate the mean of the differences or to calculate the differences of the means. When thereis no
missing data, these two simple methods provide the same answer (5.8 on the left in Figure 1). When
thereis missing data, each method provides a different result (6.9 vs. 4.6 on the right in Figure 1).
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Figure 1: Scores without Missing Data, and Scores with Missing Data

Previous Current Previous Current
Student Score Score Gain Student Score Score Gain
1 51.9 74.8 22.9 1 51.9 74.8 22.9
2 37.9 46.5 8.6 2 46.5
3 55.9 61.3 5.4 3 55.9 61.3 5.4
4 52.7 47.0 -5.7 4 47.0
5 53.6 50.4 -3.2 5 53.6 50.4 -3.2
6 23.0 35.9 12.9 6 23.0 35.9 12.9
7 78.6 77.8 -0.8 7 78.6 77.8 -0.8
8 61.2 64.7 3.5 8 61.2 64.7 3.5
9 47.3 40.6 -6.7 9 47.3 40.6 -6.7
10 37.8 58.9 21.1 10 37.8 58.9 21.1
Column Column
Mean 50.0 55.8 5.8 Mean 51.2 55.8 6.9
Difference between Currentand Difference between Currentand
Previous Score Means 5.8 Previous Score Means 4.6

A more sophisticated model can account for the missing data and provide a more reliable estimate of
the gain. As a brief overview, the gain model uses the correlation between current and previous scores
in the non-missing data to estimate means for all previous and current scores as if there were no missing
data. It does this without explicitly imputing values for the missing scores. The difference between these
two estimated means is an estimate of the average gain for this group of students. Inthis example, the
gain model calculates the estimated difference to be 5.8. Even in a small example such as this, the
estimated difference is much closer to the difference with no missing data than either measure obtained
by the mean of the differences (6.9) or the difference of the means (4.6). This method of estimation has
been shown, on average, tooutperform both of the simple methods.* This small example only
considered two grades and one subject for 10 students. Larger data sets, such as those usedin the
actualvalue-added analyses for the state, provide better correlation estimates by having more student
data, subjects, and grades. Inturn, these provide better estimates of means and gains.

This simple example illustrates the need for a model that will accommodate incomplete data sets, which
all student testing sets are. The next few sections provide more technical details about how the gain
model calculates student growth.

! See, for example, S. Paul Wright, “Advantages of a Multivariate Longitudinal Approach to Educational Value-Added Assessment without
Imputation,” Paper presented at National Evaluation Institute, 2004. Available online at https://evaas.sas.com/support/EVAAS-
AdvantagesOfAMultivariateLongitudinalApproach. pdf.
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2.2.3 Common Scale in the Gain Model

2.2.3.1 Whythe ModelUses Normal Curve Equivalents

The gain model estimates academic growth as a “gain,” or the difference between two measures of
achievement fromone pointin time to the next. For such a difference to be meaningful, the two
measures ofachievement (thatis, the two tests whose means are being estimated) must measure
academic achievement on a common scale. Even for some vertically scaledtests, there can be different
growth expectations for students based on their entering achievement. A reliable alternative regardless
of whether tests are vertically scaledis to convert scale scores to normal curve equivalents (NCEs).

An NCE distribution is similar to a percentile one. Both distributions provide context as to whethera
score s relatively high or low compared to the other scores in the distribution. In fact, NCEs are
constructedto be equivalent to percentile ranks at 1, 50 and 99 and to have a mean of 50 and standard
deviation of approximately 21.063.

However, NCEs have a critical advantage over percentiles for measuring growth: NCEs are on an equal-
interval scale. This means that for NCEs, unlike percentile ranks, the distance between 50 and 60 is the
same as the distance between 80 and 90. This difference betweenthe distributions is evident below in
Figure 2.

Figure 2: Distribution of Achievement: Scores, NCEs and Percentile Rankings

Distribution
of Scores

Normal Curve
Equivalents

Percentile
E uivalents 1 1 1 1 1 11 1 1 1 1 1
q 1 5 10 20 3040506070 80 90 95 99

1 10 20 30 40 50 60 70 80 90 99

Furthermore, although percentile ranks are usually truncated below 1 and above 99, NCEs canrange
below 0 and above 100 to preserve the equal-interval property of the distribution and to avoid
truncating the test scale. Ina typical yearamong Michigan’s state assessments, the average maximum
NCE is approximately 125. Although the gain model does not use truncatedvalues, which could create
an artificial floor or ceiling in students’ test scores, the web reporting shows NCEs as integers from 1 to
99 for display purposes.
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2.2.3.2 SampleScenario: Howto Calculate NCEs in the Gain Model

The NCE distributions used in the gain model are based on a reference distribution of test scores in
Michigan for state assessmentsor a reference distribution of test scores based on national norms for
benchmark/interim assessments. This reference distribution is the distribution of scores on a state-
mandated test for all students in a given year. By definition, the mean (or average) NCE score for the
reference distribution is 50 for each grade and subject. For identifying the other NCEs, the gain model
uses a method that does not assume that the underlying scale is normal. This method ensures an equal-
interval scale, evenif the testing scales are not normally distributed.

Table 1 provides an example of how the gain model converts scale scores to NCEs. The first five columns
of the table are based on a subset of Michigan data showing a tabulated distribution of about 45,000
testscores. Ina given subject, grade, and year, the tabulation shows, for each given score, the number
of students who scoredthat score (“Frequency”) as well as the percentage (“Percent”) that frequency
represents out of the entire population of test-takers. The table also tabulates the “Cumulative
Frequency as the number of students who made that score or lower and its associated percentage
(“Cumulative Percent”).

The next column, “Percentile Rank,” converts each score to a percentile rank. As a sample calculation using
the data in Table 1 below, the score of 1477 has a percentile rank of 36.6. The data show that 36.0% of
students scored below 1477 and 37.2% of students scored at or below 1477. To calculate percentile ranks
with discrete data, the usual convention is to consider half of the 1.2% reported in the Percent column to
be “below” the cumulative percent and “half” above the cumulative percent. To calculate the percentile
rank, half of 1.2% (0.6%) is added to 36.0% from Cumulative Percent to give you a percentile rank of 36.6,
as shown in the table.

Table 1: Converting Tabulated Test Scores to NCE Values

Score Frequency Cumulative Percent Cumulative Percentile  Z-Score NCE
Frequency Percent Rank
1474 1,277 36,632 1.2 33.6 33.0 -0.440 40.74
1475 1,366 37,998 1.3 34.8 34.2 -0.407 41.44
1476 1,299 39,297 1.2 36.0 35.4 -0.373  42.13
1477 1,293 40,590 1.2 37.2 36.6 -0.342  42.80
1478 1,317 41,907 1.2 38.4 37.8 -0.310  43.47
1479 1,299 43,206 1.2 39.6 39.0 -0.279  44.13
1480 1,319 44,525 1.2 40.8 40.2 -0.248  44.79

NCEs are obtained from the percentile ranks using the normal distribution. The table of the standard
normal distribution (found in many textbooks?) or computer software (for example, a spreadsheet)
provides the associated Z-score from a standard normal distribution for any given percentile rank. NCEs

2 See, for example, the inside front cover of William Mendenhall, Richard L. Scheaffer, and Dennis D. Wackerly, Mathematical Statistics with
Applications (Boston: Duxbury Press, 1986).
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are Z-scores that have been rescaled to have a “percentile-like” scale. As mentioned above, the NCE
distribution is scaled so that NCEs exactly match the percentile ranks at 1, 50, and 99. To do this, each Z-
score is multiplied by approximately 21.063 (the standard deviation on the NCE scale) and then 50 (the
mean on the NCE scale)is added.

With the test scores convertedto NCEs, growthis calculated as the difference from one yearand grade
to the next in the same subject for a group of students. This process is explained in more technical detail
in the next section.

2.2.4 Technical Description of the Gain Model

2.2.4.1 Definition of the Linear Mixed Model

As a linear mixed model, the gain model for district, school, and teacher value-added reporting is
represented by the following equation in matrix notation:

y=XB+Zv+e (1)
v (in the growth context)is the m X 1 observation vector containing test scores (usually NCEs) for all
students in all academic subjects tested over all grades and years.
X is aknown m X p matrix that allows the inclusion of any fixed effects.
B is an unknown p X 1 vector of fixed effects to be estimated from the data.

Z is aknown m X g matrix that allows the inclusion of random effects.

v is a non-observable g X 1 vector of random effects whose realized values are to be estimated from
the data.

€ is anon-observable m X 1 random vector variable representing unaccountable random variation.

Both v and € have means of zero, thatis, E(v = 0) and E(e = 0). Their joint varianceis given by:

varl?] =16 ) g

where R is the m X m matrixthat reflects the amount of variationin and the correlationamong the
student scores residual to the specific model being fitted to the data, and G is the g X q variance-
covariance matrix that reflects the amount of variationin and the correlationamong the random
effects. If (v, €) are normally distributed, the joint density of (y, v) is maximized when B has value b and
v has value u given by the solution to the following equations, known as Henderson’s mixed model
equations:3

XTR1X  XTR™'Z ][b] _ [XTR‘ly (3)

ZTR1X ZTR'Z+ G 1l ZTR™ 1y

3McLean, Robert A., William L. Sanders, and Walter W. Stroup (1991). "A Unified Approach to Mixed Linear Models." The American Statistician,
Vol. 45, No. 1, pp. 54-64.
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Let a generalizedinverse of the above coefficient matrix be denoted by

X"TR1X  X"R7'Z ]_: C1s Clz]zc ()
ZTR™'X ZTR'Z+G! Ca1 C2
If G and R are known, then some of the properties of a solution for these equations are:

1. Equation (5) below provides the best linear unbiased estimator (BLUE) of the estimable linear
function, KT B3, of the fixed effects. The second equation (6) below represents the variance of
that linear function. The standard error of the estimable linear function can be found by taking
the square root of this quantity.

E(K"TB) =K"b (5)
Var(K™h) = (KT)C{1K (6)
2. Equation (7) below provides the best linear unbiased predictor (BLUP) of v.
Eww=u (7)
Var(u—v) = C,, (8)
where u is unique regardless of the rank of the coefficient matrix.

3. The BLUPof alinear combination of random and fixed effects can be given by equation (9)
below provided that KT is estimable. The variance of this linear combination is given by
equation (10).

E(KTB+MTv|u) =K"b + MTu (9)
Var(KT(b— B) + M™(u—v)) = (KTMT)C(K"MT)T (10)

4. With G and R known, the solution for the fixed effects is equivalent to generalized least squares,
and if v and € are multivariate normal, then the solutions for § and v are maximum likelihood.

5. If G and R are not known, then as the estimated G and R approachthe true G and R, the
solution approaches the maximum likelihood solution.

6. If vand e are not multivariate normal, then the solution to the mixed model equations still
provides the maximum correlation between v and u.

2.2.4.2 Districtand SchoolModels

The district and school gain models do not contain random effects; consequently, the Zv term drops out
in the linear mixed model. The X matrix is an incidence matrix (a matrix containing only zeros and ones)
with a column representing eachinteraction of school (in the school model), subject, grade, and year of
data. The fixed-effects vector 8 contains the mean score for each school, subject, grade, and year with
each element of § corresponding to a column of X. Since gainmodels are generally run with each school
uniqguely defined across districts, thereis no need to include districts inthe model.

Unlike the case of the usual linear model used for regressionand analysis of variance, the elements of €
are not independent. Their interdependence is captured by the variance-covariance matrix, which is also
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known as the R matrix. Specifically, scores belonging to the same student are correlated. Ifthe scores in
y areordered sothat scores belonging to the same student are adjacent to one another, then the R
matrixis block diagonal with a block, R;, for each student. Eachstudent’s R; is a subset of the “generic”
covariance matrix R, that contains a row and column for each subject and grade. Covariances among
subjects and grades are assumedto be the same for all years (technically, all cohorts), but otherwise the
R matrixis unstructured. Each student’s R; contains only those rows and columns from R that match
the subjects and grades for which the student has test scores. Inthis way, the gain model is able to use
all available scores from each student.

Algebraically, the district gain model is represented as:

Yijkid = Hjkia T €ijria (11)

where y;ji;4 represents the test score for the i™" studentin the j* subject in the k™ grade during the
[t" year in the d™" district. Ujkia is the estimated meanscore for this particular district, subject, grade,
and year. €; jiq is the random deviation of the i™" student’s score from the district mean.

The school gain model is represented as:

Yijkis = Hjkis T €ijkis (12)
This is the same as the district analysis with the addition of the subscript s representing st"* school.

The gain model uses multiple years of student testing data to estimate the covariances that canbe
found in the matrix R. This estimation of covariances is done within each level of analyses and can
resultin slightly different values within each analysis.

Solving the mixed model equations for the district or school gain model produces a vector b that
contains the estimated meanscore for eachschool (in the school model), subject, grade, and year. To
obtain a value-added measure of average student growth, a series of computations can be done using
the students from a school in a particular year and their prior and current testing data. The model
produces means in each subject, grade, and year that can be used to calculate differences in order to
obtain gains. Because students might change schools from one year to the next (in particular when
transitioning from elementaryto middle school, for example), the estimated meanscore for the prior
year/grade uses students who existed in the current year of that school. Therefore, mobility is taken into
account within the model. Growth of students is computed using all students in each school including
those that might have moved buildings from one year to the next.

The computation for obtaining a growth measure can be thought of as a linear combination of fixed
effects from the model. The best linear unbiased estimate for this linear combination is given by
equation (5). The growth measures are reported along with standard errors, and these can be obtained
by taking the square root of equation (6) as described above.

2.2.4.3 Teacher Model

The teacher estimates use a more conservative statistical process to lessenthe likelihood of
misclassifying teachers. Eachteacher’sgrowth measure is assumedto be equal to the state average (or
the average of the nationally representative sample for benchmark/interim assessments) in a specific
year, subject, and grade until the weight of evidence pulls them either above or below that state
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average. The model also accounts for the percentage of instructional responsibility the teacher has for
each student during the course of eachschool year. Furthermore, the teacher model is “layered,” which
means that:

e Students’ performance with both their current and previous teacher effects are incorporated.
e For each school year, the teacher estimates are based students’ testing data collected over
multiple previous years.

Each element of the statistical model for teacher value-added modeling provides an additional level of
protection against misclassifying each teacher estimate.

To allow for the possibility of many teachers with relatively few students per teacher, the gain model
enters teachers as random effects via the Z matrixin the linear mixed model. The X matrix contains a
column for each subject, grade, andyear, and the b vector contains an estimated state mean score for
each subject, grade, and year. The Z matrix contains a column for each subject, grade, year, and
teacher, andthe u vector contains an estimated teacher effect for each subject, grade, year, and
teacher. The R matrixis as described above for the district or school model. The G matrix contains
teacher variance components with a separate unique variance component for each subject, grade, and
year. To allow for the possibility that a teacher might be very effective in one subject and very
ineffective in another, the G matrixis constrained to be a diagonal matrix. Consequently, the G matrixis
a block diagonal matrix with a block for each subject/grade/year. Each block has the form azjkll where
szkl is the teacher variance component for the jt" subject in the k" gradein the [t"
identity matrix.

year,and [ is an

Algebraically, the teacher model is represented as:
ikt

T
Yijki = Hjra t+ Z Wijkre X Tierre |+ €ijra (13)
<k t=1

Yiji1 is the test score for the it student in the j™ subject in the k grade in the I* year. 7}, is the
teacher effect of the t " teacherin the j* subjectin grade k* in year [*. The complexity of the
parenthesized term containing the teacher effects is due to two factors. First, inany given subject,
grade, and year, a student might have more than one teacher. The inner (rightmost) summationis over
all the teachers of the i*"* student in a particular subject, grade, and year, denoted by Tijke1 - Tkt is
the effect of the t*" teacher. Wi ji*1*¢ is the fraction of the i*" student’s instructional time claimed by the
tth teacher. Second, as mentioned above, this model allows teacher effects to accumulate over time.
The outer (leftmost) summation accumulates teacher effects not only for the current (subscripts k and
l) but also over previous grades and years (subscripts k* and [*) in the same subject. Because of this
accumulation of teacher effects, this type of model is often called the “layered” model.

In contrast tothe model for many district and school estimates, the value-added estimates for teachers
are not calculated by taking differences between estimated mean scores toobtain mean gains. Rather,
this teacher model produces teacher “effects” (in the u vector of the linear mixed model). It also
produces state-level meanscores (for each year, subject, and grade) in the fixed-effects vector b.
Because of the waythe X and Z matrices are encoded, in particular because of the “layering” in Z,
teacher gains can be estimated by adding the teacher effect to the state meangain. That is, the
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interpretation of a teacher effect in this teacher model is as a gain expressed as a deviation from the
average gainfor the statein a given year, subject, and grade.

Table 2 illustrates how the Z matrixis encoded for three students who have three different scenarios of
teachers during grades 3, 4, and 5 in two subjects, Math (M) and Reading (R). Teachers are identified by
the letters A—F.

Tommy’s teachers represent the conventional scenario. Tommy is taught by a single teacher in both
subjects eachyear (teachers A, C, and E in grades 3, 4, and 5, respectively). Notice thatin Tommy’s Z
matrix rows for grade 4 there are ones (representing the presence of a teacher effect) not only for
fourth-grade teacher C but alsofor third-grade teacher A. This is how the “layering” is encoded.
Similarly, in the grade 5 rows, there are ones for grade 5 teacher E, grade 4 teacher C, and grade 3
teacherA.

Susan is taught by two different teachers in grade 3: teacher A for Math and teacher B for Reading. In
grade 4, Susanhad teacher C for Reading. For some reason, in grade 4 no teacher claimed Susan for
Math even though Susanhad a grade 4 Math test score. This score canstill be included in the analysis by
entering zeros into the Susan’s Z matrix rows for grade 4 Math. In grade 5, however, Susan had no test
scorein Reading. This row is completely omitted from the Z matrix. There will always be a Z matrix row
corresponding to eachtest scorein the y vector. Since Susan has no entryin y for grade 5 Reading,
there can be no corresponding row in Z.

Eric’s scenarioillustrates teamteaching. Ingrade 3 Reading, Eric received an equal amount of
instruction from teachers Aand B. The entries in the Z matrix indicate each teacher’s contribution, 0.5
for each teacher. Ingrade 5 Math, however, Eric was taught by both teachers E and F, but they did not
make an equal contribution. Teacher E claimed 80% responsibility, and teacher F claimed 20%.

Because teacher effects are treated as random effects in this approach, their estimates are obtained by
shrinkage estimation, which is technically known as best linear unbiased prediction or as empirical
Bayesian estimation. This means that a priori a teacher is considered “average” (with a teacher effect of
zero) until there is sufficient student data to indicate otherwise. This method of estimation protects
against false positives (teachers incorrectly evaluated as most effective or least effective), particularlyin
the case of teachers with few students.

Page 13



Table 2: Encoding the Z Matrix

Teachers

Third Grade Fourth Grade Fifth Grade

Student Grade Subjects
Tommy 3 M 1 0 0 0 0 0 0 0 0 0 0 0
R 0 1 0 0 0 0 0 0 0 0 0 0
4 M 1 0 0 0 1 0 0 0 0 0 0 0
R 0 1 0 0 0 1 0 0 0 0 0 0
5 M 1 0 0 0 1 0 0 0 1 0 0 0
R 0 1 0 0 0 1 0 0 0 1 0 0
Susan 3 M 1 0 0 0 0 0 0 0 0 0 0 0
R 0 0 0 1 0 0 0 0 0 0 0 0
4 M 1 0 0 0 0 0 0 0 0 0 0 0
R 0 0 0 1 0 1 0 0 0 0 0 0
5 M 1 0 0 0 0 0 0 0 0 0 1 0
Eric 3 M 1 0 0 0 0 0 0 0 0 0 0 0
R 0 0.5 0 0.5 0 0 0 0 0 0 0 0
4 M 1 0 0 0 0 0 1 0 0 0 0 0
R 0 0.5 0 0.5 0 0 0 1 0 0 0 0
5 M 1 0 0 0 0 0 1 0 0.8 0 0.2 0
R 0 0.5 0 0.5 0 0 0 1 0 0 0 1
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From the computational perspective, the teacher gain can be defined as a linear combination of both
fixed effects and random effects and is estimated by the model using equation (9). The variance and
standard error can be found using equation (10).

2.2.4.4 Accommodations to the Gain Modelfor Missing 2019-20 Data Due to the Pandemic

In spring 2020, the COVID-19 pandemic required schools to close early and cancel statewide summative
assessments. As a result, scores are not available for Michigan’s M-STEP assessments based onthe
2019-20 school year, and it is not possible to measure growth on the M-STEP assessments from the
2018-19 to the 2019-20 school years or from the 2019-20 tothe 2020-21 school years. For the gain
model based on M-STEP Math and ELA and PSAT 8/9 in grade 8, the 2020-21 reporting measures growth
from the 2018-19 school year to the 2020-21 school year. Because interim/benchmark assessments are
administered at several points throughout the school year, the gain model for MAP growth in the same
way it hasin previous years, except that 2019-20 measures growth from the beginning of year (BOY) to
the middle of year (MQY) rather than BOY to end of year (EQY).

From a technical perspective, the gain model for M-STEP in Mathand ELA is essentiallythe same as it
has been in previous years except that growthis measured over two years rather than one year.
However, the interpretation of these growth measures changes slightlyin two notable ways.

First, because the models provide two-year growth measures, the growth measure for grades where
students transition from one school to another will then include growth from the feeder school(s) as
well as the receiver school. For example, a middle school with grades 6—8 could receive a growth
measure for sixth grade based on the students’ growthin sixth grade as well as their growth from the
feeder elementary school(s) in fifth grade.

In other words, it is not possible to parse out the individual contribution of the middle school in sixth
grade apart from those from the elementary school(s) in fifth grade because of the missing year of test
scores. For the district-level growth measures and for the non-transition grades, the two-year growth
measures are still solely representative of growth within the specific district and the non-transition
grades for the school are still solely representative of growth within the specific school.

Second, at a particular school, the growth of certain groups of students are not representedin the two-
year measures as they would be in two one-year growth measures. For example, itis not possible to
measure the growth of grade 4 students this year because there is no grade 3 data from last year and no
statewide assessment touse from grade 2 in 2019. Similarly, it is not possible to report grade 8 growth
from last year because there is no exiting achievement for these students in their last year at the school.

Despite these differences, the conceptual explanation of the 2020-21 growth measures is the same as it
has always been: these growth measures compare students’ exiting achievement with their entering
achievement over two points in time.

2.3 Predictive Model

2.3.1 Overview

Tests that are not given in consecutive grades require a different modeling approach from the gain
model. The predictive model is used for such assessmentsin Michigan. The predictive modelis a
regression-based model where growth is a function of the difference between students’ expected
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scores with theiractualscores. Expected growth is met when students with a district or school made
the same amount of growth as students with the average district or school.

There aretwo separate analyses for EVAAS reporting based on the predictive model: one each for
districts and schools. There is no teacher model because the assessmentsthat use the predictive model
do not receive Teacher reports. The district and school models are essentially the same.

Regression models are used in virtually every field of study, and their intent is to identify relationships
between two or more variables. When it comes to measuring growth, regression models identify the
relationship between prior test performance and actual test performance for a given course. In more
technical terms, the predictive model is known as the univariate response model (URM), a linear mixed
model and, more specifically, an analysis of covariance (ANCOVA) model.

The key advantages of the predictive model can be summarized as follows:

e [t minimizes the influence of measurement error and increases the precision of predictions by
using multiple prior test scores as predictors for each student.

e Itdoes not require students to have all predictors or the same set of predictors as long as a
student has at least three prior test scores as predictors of the response variable in any subject
and grade.

e [tallows educators tobenefit from all tests, even when tests are on differing scales.

2.3.2 Conceptual Explanation

As mentioned above, the predictive model is ideal for assessmentsgivenin non-consecutive grades,
such as M-STEP Science and Social Studies assessmentsand SAT. Itis alsoused for PSAT in grades 9 and
10. Consider all students who testedin M-STEP Science in grade 8 in a given year. The gain model is not
possible since there isn’t a science test in the immediate prior grade. However, these students might
have a number of prior test scores in M-STEP Math and ELA in grades 3—7 and M-STEP Social Studies in
grade 5. These prior test scores have a relationship with M-STEP Science in grade 8, meaning that how
students performed on these tests can predict how the students perform on M-STEP Science in grade 8.
The growth model does not assume what the predictive relationship will be; instead, the actual
relationships observed by the data define the relationships. This is shown in Figure 3 below where each
dot represents a student’s prior score on M-STEP Math grade 7 plotted with their score on M-STEP
Science grade 8. The best-fit line indicates how students with a certain prior score on M-STEP Math
grade 7 tend to score, on average, on M-STEP Science grade 8. This illustrationis based on one prior
test; the predictive model uses many prior test scores from different subjects and grades.
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Figure 3: Test Scores from One Assessment Have a Predictive Relationship to Test Scores from Another
Assessment
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Some subjects and grades will have a greater relationshipto M-STEP Science in grade 8 than others;
however, the other subjects and grades still have a predictive relationship. For example, prior Math
scores might have a stronger predictive relationship to M-STEP Science in grade 8 than prior ELA scores,
but how a student performs on the M-STEP ELA assessment typically provides an idea of how we might
expect a student to perform on average on M-STEP Science assessment. This is shownin Figure 4 below,
where there are a number of different assessmentsthat have a predictive relationship with M-STEP
Science in grade 8. All of these relationships are considered together in the predictive model with some
assessments weighted more heavily than others.

Figure 4: Relationships Observedin the Statewide Data Inform the Predictive Model
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Note that the prior test scores do not need to be on the same scale as the assessment being measured
for student growth. Just as height (reported in inches) and weight (reported in pounds) can predict a
child’s age (reported in years), the growth model can use test scores from different scales tofind the
predictive relationship.

Each student receives an expected score based on their own prior testing history. In practical terms, the
expectedscore represents the student’s entering achievement because it is based on all prior testing
information to date. Figure 5 below shows the relationship between expected and actual scores for a
group of students.

Figure 5: Relationship Expected Score and Actual Score for Selected Subject and Grade
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The expectedscores can be aggregated to a specific district or school and then compared to the
students’ actualscores. In other words, the growth measure is a function of the difference between the
exiting achievement (or average actual score) and the entering achievement (or average expectedscore)
for a group of students. Unlike the gain model, the actualscore and expected score are reportedin the
scaling units of the test rather than NCEs.

2.3.3 Technical Description of the District and School Models

The predictive model has similar approaches for districts and schools. The approachis described briefly
below, with more details following.

e The scoreto be predicted serves as the response variable (y, the dependent variable).

e The covariates (x’s, predictor variables, explanatory variables, independent variables) are scores
on tests the student has takenin previous years from the response variable.

e There is a categorical variable (class variable, grouping variable) to identify the district or school
from whom the student received instructionin the subject, grade, and year of the response
variable (y).

Algebraically, the model can be represented as follows for the it" student.

Vi= byt aj+ By —pu)+ Br(xip—p2)+ -+ € (14)
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The u terms are means for the response and the predictor variables. a; is the district/school effect for

the j" district/school. The 8 terms are regression coefficients. Predictions to the response variable are

made by using this equation with estimates for the unknown parameters (us, B, and sometimes a;).

The parameter estimates (denoted with “hats,” e.g., (i, [?) are obtained using all students that have an
observed value for the specific response and have three predictor scores. The resulting prediction

equation for the i*" student is as follows:

Vi= fy+ Br(xy — )+ Pl — )+ (15)
Two difficulties must be addressedin order to implement the estimation and use of this model. First,
not all students will have the same set of predictor variables due to missing test scores. Second, because
the predictive model is an ANCOVA model with school as a random effect, the regression coefficients
are pooled within group (district or school). The strategy for dealing with missing predictors is to
estimate the joint covariance matrix (call it C) of the response and the predictors. Let C be partitioned
into response (y) and predictor (x) partitions, that s,

c Cyxe

- [ & 9
Note that Cin equation (16) is not the same as Cin equation (4). This matrixis estimated using the EM
(expectation maximization) algorithm for estimating covariance matrices in the presence of missing data
available in SAS/STAT® (although no imputation is actually used). It should also be noted that, because
this model is an ANCOVA model, Cis a pooled-within group (district or school) covariance matrix. This is
accomplished by providing scores to the EM algorithm that are centered around group means (i.e., the
group means are subtracted from the scores) rather thanaround grand means. Obtaining Cis an
iterative process since group means are estimated withinthe EM algorithm to accommodate missing
data. Once new group means are obtained, another set of scores is fed into the EM algorithm again until
C converges. This overall iterative EM algorithmis what accommodates the two difficulties mentioned
above. The estimation only includes students who had a test score for the response variable in the most
recent year and who had at least three predictor variables are included in the estimation. Given such a
matrix, the vector of estimated regression coefficients for the projection equation (15) can be obtained
as:

B = Cilcyy (17)

This allows one to use whichever predictors a student has to get that student’s expected y-value (;).
Specifically, the C,, matrix used to obtain the regression coefficients for a particular student is that
subset of the overall C matrixthat corresponds to the set of predictors for which this student has scores.

The prediction equation also requires estimated meanscores for the response and for each predictor
(the ji terms in the prediction equation). These are not simply the grand mean scores. It can be shown
thatin an ANCOVA if one imposes the restrictionthat the estimated “group” effects should sumto zero
(thatis, the effect for the “average” district or school is zero), then the appropriate means are the
means of the group means. The group-level means are obtained from the EM algorithm mentioned
above, which accounts for missing data. The overall means (fi terms) are then obtained as the simple
average of the group-level means.
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Once the parameter estimates for the prediction equation have been obtained, predictions can be made
for any student with any set of predictor values as long as that student has a minimum of three prior
test scores. This is to avoid bias due to measurement error in the predictors. For the 2020-21 reporting,
expectedscores for M-STEP Science and Social Studies in grade 5 are based on only two predictors due
to missing data from the 2019-20 school year

Ji= fy+ By (xiy — A1) + Bo (e — fig) + -+ (18)

The ¥; termis nothing more than a composite of all the student’s past scores. It is a one-number
summary of the student’s level of achievement prior to the current year, and this termis called the
expectedscore or entering achievement in the web reporting. The different prior test scores making up
this composite are given different weights (by the regression coefficients, the ﬁs) in order to maximize
its correlation with the response variable. Thus, a different composite would be used when the response
variable is Mathematics thanwhen it is Evidence-Based Reading and Writing, for example. Note that the
@; termis not included in the equation. Again, this is because J; represents prior achievement before
the effect of the current district, school, or teacher.

The second stepin the predictive model is to estimate the group effects (a;) using the following
ANCOVA model.

Yi= Yo+t Vit a + ¢ (19)

In the predictive model, the effects (a;) are considered random effects. Consequently, the @;s are
obtained by shrinkage estimation (empirical Bayes).* The regression coefficients for the ANCOVA model
aregiven by the ys.

2.3.3.1 Accommodations to the Predictive Modelfor Missing 2019-20 Data Due to the Pandemic

In spring 2020, the COVID-19 pandemic required schools to close early and cancel statewide summative
assessments. As a result, statewide scores are not available for Michigan’s M-STEP, PSAT and SAT exams
based on the 2019-20 school year, and it is not possible to measure growth from the 2018-19 to the
2019-20 school years. For the predictive model, the 2020-21 reporting measures growth using students’
predictors through the 2018-19 and then compares to their performance on the 2020-21 assessment.

As a reminder, the predictive model is used to measure growth for assessments givenin non-
consecutive grades, suchas M-STEP Science and Social Studies assessments. Because these assessments
are not administered every year, it has always been possible that students do not have any test scores in
the immediate prior year. The model can provide a robust estimate of students’ entering achievement
for the course by using all other available test scores from other subjects, grades, and years.

In other words, the predictive model does not require any technical adaptations toaccount for the
missing year of data and the interpretation of the results is similar to a typical year of reporting.

4 For more information about shrinkage estimation, see, for example, Ramon C. Littell, George A. Milliken, Walter W. Stroup, Russell D.
Wolfinger, and Oliver Schabenberger, SAS for Mixed Models, Second Edition (Cary, NC: SAS Institute Inc., 2006). Another example is Charles E.
McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models, Second Edition (Hoboken, NJ: John Wiley & Sons,
2008).
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2.4 Projection Model

2.4.1 Overview

The longitudinal data sets usedto calculate growth measures for groups of students can also provide
individual student projections to future assessments. A projection is reported as a probability of
obtaining a specific score or above on anassessment, such as a 70% probability of scoring Proficient or
above on the next summative assessment. The probabilities are based on the students’ own prior
testing history as well as how the cohort of students who just took the assessment performed. Due to
the pandemic, the projections to the assessments for the 2021-22 school year are based on the cohort
of students who took the assessment inthe 2018-19 school year rather thanthe 2020-21 school year.
Projections are available for state assessmentsas well as to college readiness assessments.

Projections are useful as a planning resource for educators, and they can inform decisions around
enrollment, enrichment, remediation, counseling, and intervention to increase students’ likelihood of
future success.

2.4.2 Technical Description

The statistical model that is used as the basis for the projections is, in traditional terminology, an
analysis of covariance (ANCOVA) model. This model is the same statistical model usedin the predictive
model applied at the school level describedin Section 2.3.3. Inthe projection model, the score to be
projected serves as the response variable (y), the covariates (x’s) are scores on tests the student has
already taken, and the categorical variable is the school at which the student receivedinstruction in the
subject, grade, and year of the response variable (y). Algebraically, the model can be represented as
follows for the i*" student.

Vi= byt aj+ By —pu)+ Br(xip—p2)+ -+ € (20)

The p terms are means for the response and the predictor variables. a; is the school effect for the jth
school, the school attended by the i*" student. The 8 terms are regression coefficients. Projections to
the future are made by using this equation with estimates for the unknown parameters («s, Ss,
sometimes a;). The parameter estimates (denoted with “hats,” e.g., i, ,[?) are obtained using the most
current data for which response values are available. The resulting projection equation for the it"
studentis

Vi= iyt a;+ B — A+ B Crig = i) + -+ € (21)

The reasonfor the “+” before the &;termis that since the projection is to a future time, the school that
the student will attend is unknown, so this term is usually omitted from the projections. This is
equivalent to setting &; to zero, thatis, to assuming that the student encounters the “average schooling
experience” in the future.

Two difficulties must be addressedtoimplement the projections. First, not all students will have the
same set of predictor variables due to missing test scores. Second, because this is an ANCOVA model
with a school effect i, the regression coefficients must be “pooled-within-school” regression
coefficients. The strategyfor dealing with these difficulties is the same as described in Section 2.3.3
using equations (16), (17), and (18) and will not be repeated here.
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Once the parameter estimates for the projection equation have been obtained, projections can be made
for any student with any set of predictor values. However, to protect against bias due to measurement
error in the predictors, projections are made only for students who have at least three available
predictor scores (or, in the case of M-STEP Social Studies in grade 5 for the 2020-21 reporting, two
predictor scores). Inaddition to the projected score itself, the standard error of the projection is
calculated (SE (¥;)). Given a projected score and its standarderror, it is possible to calculate the
probability that a student will reach some specified benchmark of interest (b). Examples are the
probability of scoring at least Proficient on a future end-of-grade test or the probability of scoring at
least an established college readiness benchmark. The probability is calculated as the area above the
benchmark cutoff score using a normal distribution with its mean equal to the projected score and its
standard deviation equal to the standard error of the projected score as described below. @ represents
the standard normal cumulative distribution function.

yi_b) (22)

Prob(y; =2 b) = <D< —

2.5 Outputsfrom the Models

2.5.1 Gain Model

The gainmodel is used for courses where students test in consecutive grade-given tests. As such, the
gain model uses M-STEP in Math and ELA in grades 3—-7 and PSAT 8/9 in grade 8 to provide district,
school, and teacher growth measures in the following content areas:

e M-STEP Mathin grades 5-7 for 2020-21 reporting, grades 4—7 for 2018-19 reporting, and grades
4-8 for 2017-18 reporting

e M-STEP ELAin grades 5-7 for 2020-21 reporting, grades 4-7 for 2018-19 reporting, and grades
4-8 for 2017-18 reporting

e PSAT 8/9 in grade 8 for 2018-19 and 2020-21 reporting

Note that teacher reporting is only available to those districts that have chosen to opt in through
MiDataHub, and it can be basedon either the statewide summative assessmentslisted above or the
district’s interim/benchmark assessments, which included the following in previous years:

e MAP Mathin grades 1-8
e MAP Readingin grades 1-8

In addition to the mean scores and mean gain for an individual subject, grade, and year, the gain model
can also provide the following teacher composites across subjects, grades, and years.

In general, these are all different forms of linear combinations of the random effects, and their
estimates and standard errors are computed in the same manner described above in equations (9) and
(10) for the teacher model. More details about teacher composites across subjects, grades, and years
are available in Section 5.
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2.5.2 Predictive Model

The predictive model is used for courses where students test in non-consecutive grade-giventests. As
such, the predictive model provides growth measures for districts and schools in the following content
areas:

e M-STEP Science in grades 5,8 and 11

e M-STEP Social Studies in grades 5, 8 and 11
e PSAT8/9 ingrade9

e PSAT 10

o SAT

In addition to the mean scores and growth measures for an individual subject, grade, andyear, the
predictive model canalso provide multi-year average growth measures (up to three years) for each
subject and grade or course.

2.5.3 Projection Model
Projections are provided to future state assessmentsas well as college readiness assessments:

e M-STEP Mathand ELA in grades 5-7

e M-STEP Social Studies in grades 5, 8, and 11

e M-STEP Science in grades 8and 11

e PSAT 8/9 Mathematics andELAin grade 8

e PSAT 8/9 in Mathematics, Evidence-Based Reading and Writing in grade 9
e PSAT 10 Mathematics and Evidence-Based Reading and Writing in grade 10
e SAT Mathematics and Evidence-Based Reading and Writing

More specifically, M-STEP projections are typically provided one or two grade levels above a student’s
lasttested grade, suchas projections to grades 6 and 7 for students who most recently testedin grade
5. For the 2021 reporting, M-STEP projections are provided to a student’s next tested grade-level M-
STEP assessment, such as a projection to grade 6 for students who most recently testedin grade 5.
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3 Expected Growth

3.1 Overview

Conceptually, growthis simply the difference between students’ entering and exiting achievement. As
noted in Section 2, zerorepresents “expected growth.” Positive growth measures are evidence that
students made more thanthe expected growth, and negative growth measures are evidence that
students made less than the expected growth.

A more detailed explanation of expected growthand how itis calculated are useful for the
interpretation and application of growth measures.

3.2 Technical Description

Both the gain and predictive models define expected growth based on the empirical student testing
data; in other words, the model does not assume a particular amount of growth or assign expected

growthin advance of the assessment being taken by students. Both models define expected growth
within a year. This means that expected growth is always relative to how students’ achievement has
changedin the most recent year of testing rather than a fixed year in the past.

More specifically, in the gain model, expected growth means that students maintained the same
relative position with respect to the statewide student achievement that year. In the predictive
model, expected growth means that students with a district, school, orteacher made the same
amount of growth as studentswith the average district, school, or teacherin the state for that same
year, subject, andgrade.

For both models, the growth measures tendto be centered on expected growth every year with
approximately half of the district/school/teacher estimates above zeroand approximately half of the
district/school/teacher estimates below zero.

A changein assessments or scales from one year to the next does not present challenges to calculating
expected growth. Through the use of NCEs, the gain model converts any scale to a relative position, and
the predictive model already uses prior test scores from different scales to calculate the expectedscore.
When assessments change over time, expected growthis stillbased on the relative change in
achievement from one point in time to another.

3.3 lllustrated Example

Figure 6 below provides a simplified example of how growthis calculated in the gain model when the
state achievement increases. The figure has four graphs, each of which plots the NCE distribution of
scale scores for a given year and grade. Inthis example, the figure shows how the gain is calculated for a
group of grade 4 students in Year 1 as they become grade 5 studentsin Year 2. In Year 1, our grade 4
students score, on average, 420 scale score points on the test, which corresponds to the 50t NCE
(similar to the 50t percentile). In Year 2, the students score, on average, 434 scale score points on the
test, which corresponds to a 50t NCE based on the grade 5 distribution of scores in Year 2. The grade 5
distribution of scale scoresin Year 2 was higher than the grade 5 distribution of scalescoresin Year1,
which is why the lower right graphis shiftedslightly to the right. The blue line shows what is required for
students to make expected growth, which would be to maintain their position at the 50t NCE for grade
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4in Year 1 as they become grade 5 students in Year 2. The growth measure for these students is Year 2
NCE - Year 1 NCE, which would be 50 — 50 = 0. Similarly, if a group of students started at the 35t NCE,
the expectationis that they would maintainthat 35" NCE.

Note that the actual gain calculations are much more robust thanwhat is presented here; as described
in the previous section, the models can address students with missing data, team teaching, andall
available testing history.

Figure 6: Intra-Year Approach Example for the Gain Model

4th Grade 5t Grade
Year 1
Scale Score: 420 Scale Score: 430
MNCE: 50 NCE: 50
Year 2
— I —
Scale Score: 422 /
Scale Score: 434
Intra year NCE: 50 Intra year NCE: 50

In contrast, inthe predictive model, expected growth uses actual results from the most recent year of
assessment data and considers the relationships from the most recent year with prior assessment
results. Figure 7 below provides a simplified example of how growth is calculated in the predictive
model. The graph plots each student’s actual score with their expected score. Each dot represents a
student, and a best-fit line will minimize the difference betweenall students’ actualand expected
scores. Collectively, the best-fit line indicates what expected growthis for each student — given the
student’s expected score, expected growthis met if the student scores the corresponding point on the
best-fit line. Conceptually, with the best-fit line minimizing the difference between all students’ actual
and expected scores, the growth expectationis defined by the average experience. Note that the actual
calculations differ slightly since this is an ANCOVA model where the students are expectedto see the
average growth as seen by the experience with the average group (district, school, or teacher).
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Figure 7:Intra-Year Approach Example for the Predictive Model
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4 Classifying Growth into Categories

4.1 Overview

It can be helpful to classify growthinto different levels for interpretationand context, particularly when
the levels have statistical meaning. Michigan’s growth model has five categories for districts and schools
and four categories for teachers. These categories are defined by a range of values relatedto the growth
measure, its standard error and (for Teacher reports) the student-level standard deviation of growth.

4.2 Use Standard Errors Derived from the Models

As described in the modeling approaches section, the growth model provides an estimate of growth for
a district, school, or teacher in a particular subject, grade, andyear as well as that estimate’s standard
error. The standarderroris a measure of the quantity and quality of student data included in the
estimate, suchas the number of students and the occurrence of missing data for those students. It also
takes into account sharedinstructionand team teaching. Standard erroris a common statistical metric
reported in many analyses and research studies because it yields important information for interpreting
an estimate, in this case the growth measure relative to expected growth. Because measurement error
is inherent in any growth or value-added model, the standard error is a critical part of the reporting.
Taken together, the growth measure and standard error provide educatorsand policymakers with
critical information about the certainty that studentsin a district, school, or classroom are making
decidedly more orless than the expected growth. Taking the standard error into account is particularly
important for reducing the risk of misclassification (for example, identifying a teacher as ineffective
when they are truly effective) for high-stakes usage of value-added reporting.

The standard error also takes into account that even among teachers with the same number of
students, teachers might have students with very different amounts of prior testing history. Due to this
variation, the standard errors in a given subject, grade, and year could vary significantlyamong teachers,
depending on the available data that is associated with their students, andit is another important
protection for districts, schools, and teachers toincorporate standarderrors tothe value-added
reporting.

4.3 Define Growth Indicators in Terms of Standard Errors

Common statistical usage of standard errors indicates the precision of an estimate and whether that
estimate is statistically significantly different from an expected value. The growthreports use the
standard error of each growth measure to determine the statistical evidence that the growth measure is
different from expected growth. For EVAAS growthreporting, this is essentially when the growth
measure is more than or less than two standard errors above or below expected growth or, in other
words, when the growthindex is more than +2 or less than -2. For district and school growth reports,
these definitions then mapto growth indicators in the reports themselves, such that there is statistical
meaning in these categories. For the teacher growthreports, there is another statistic metricusedto
define growth categories, and this is described in the next section.
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4.4 Define Growth Categories in Terms of Student-Level Standard Deviation of
Growth

The student-level standard deviation of growth can be used to provide context about the magnitude of
growth being made by a group of students. For the gain-based model (where this metricis applied),
students typically have a current and a prior year NCE, which can be used to derive a student-level gain.
The standard deviation of the student-level distribution of growthis available for each year, subject, and
grade. Dividing the growth measures by the standard deviation provides a value known as an “effect
size,” andit indicates the practical significance regarding the group of students and whether they met,
exceeded, or fell short of expected growth.

The categories and definitions for district, school, and teacher growthreports areillustratedin the
following section.

4.5 Categorizing District and School Growth Measures

There are two ways to visualize how the growth measure and standard error relate to expected growth
and how these canbe used to create categories.

The first way is toframe the growth measure relative to its standard error and expected growth at the
same time. For district and school reporting, the categories are defined as follows:

e Well Aboveindicates that the growth measure is twostandard errors or more above expected
growth (0). This level of certaintyis significant evidence that students made more growththan
expected.

e Aboveindicates that the growth measure s at least one but less thantwo standard errors above
expected growth (0). This is moderate evidence that students made more growththan
expected.

e Meets indicates that the growth measure s less than one standard error above expected
growth (0) but no more than two standard errors below expected growth (0). This is evidence
that students made growth as expected.

o Below indicates that the growth measure is more than one but no more than two standard
errors below expected growth (0). This is moderate evidence that students made less growth
than expected.

o Well Below is an indication that the growth measureis less thanor equal to twostandarderrors
below expected growth (0). This level of certaintyis significant evidence that students made less
growththan expected.

Figure 8 below shows visual examples of each category. The greenline represents the expected growth.
The solid black line represents the range of values included in the growth measure plus and minus one
standard error. The dotted black line extends the range of values to the growth measure plus and minus
two standard errors. Ifthe dotted black line is completely above expected growth, then thereis
significant evidence that students made more than expected growth, which represents the Well Above
category. Conversely, ifthe dotted black line is completely below expected growth, then there is
significant evidence that students made less than expected growth, which represents the Well Below
category. Above and Below indicate, respectively, that there is moderate evidence that students made
more than expected growthand less than expected growth. Inthese categories, the solid black line is
completely above or below expected growth but not the dotted black line. Meets indicates that there is
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evidence that students made growth as expected as both the solid and dotted cross the line indicating
expected growth.

Figure 8: Visualization of Growth Categories with Expected Growth, Growth Measures, and Standard

Errors
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This graphicis helpful in understanding how the growth measure relates to expected growth and
whether the growth measure represents a statistically significant difference from expected growth.

The second wayto frame the categories is to create a growth index, which is calculated as shown below:

Growth Measure — Expected Growth

Growth Index = (23)

Standard Error of the Growth Measure
The growthindex is similar in concept to a Z-score or t-value, and it communicates as a single metricthe
certainty or evidence that the growth measure is decidedly above or below expected growth. The
growthindex is useful when comparing value-added measures from different assessments orin
different units, such as NCEs or scale scores. The categories can be established as ranges based on the
growthindex, such as the following:

e Well Aboveindicates significant evidence that students made more growth than expected. The
growthindex is 2 or greater.

e Aboveindicates moderate evidence that students made more growth than expected. The
growthindex is between 1 and 2.

e Meets indicates evidence that students made growth as expected. The growthindex is between
-land 1.

e Below indicates moderate evidence that students made less growth than expected. The growth
index is between -2 and -1.
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e Well Below indicates significant evidence that students made more growth than expected. The
growthindex is less than -2.

This is representedin the growthindicator bar in Figure 9, which is similar to what is provided in the
District and School Value-Added reports in the EVAAS web application. The black dotted line represents
expected growth. The color-coding within the bar indicates the range of values for the growthindex
within each category.

Figure 9: Sample Growth Indicator Bar

Evidence of less & Expected Growth S Evidence of more

growth : growth
Index is less than -3.00 —(- n Index is greater than 3.00
Growth Index

Itis important to note that these two illustrations provide users with the same information; they are
simply presenting the growth measure, its standard error, and expected growthin different ways.

4.6 Categorizing Teacher Growth Measures

Teacher reporting will categorize teacher growth measures using a two-step process based on, first, the
growthindex and, second, the effect size.

Again, the growthindex is the growth estimate divided by the standard error, which is specificto each
estimate. The effect size is the growth measure divided by the student-level standard deviation of
growth. The effect size provides an indicator of magnitude and practical significance that the group of
students met, exceeded, or fell short of expected growth.

This two-step approachfirst considers whether there is statistical certainty that the growth measureis
above or below the expectation of growth. The second step determines whether the growthmeasureiis
above or below the growth expectation by a certain magnitude. The first step uses the growth index to
determine thresholds for the certainty, and the second step uses the effect size to determine thresholds
for magnitude.

For the first step with uncertainty, the thresholds are an index of +2 or greater, anindex of -2 or less, or
an index between -2 and +2. These thresholds are similar to the concept of a 95% confidence interval. If
a 95% confidence interval around the growth measure did not contain the growth expectation, then
they would fall outside the thresholds. The second step uses an effect size threshold of 0.4and -0.4.
These values correspond toa “medium” effect size as referencedin John Hattie’s work.>

In accordance with MDE policies, there are four categories for teacher growth categorization. The top
category has a growth index of greater thanor equal to 2 and an effect size of greaterthanor equal to
0.4. The next highest category consists of all other measures where the growthindex is greater thanor

®See, for example, John Hattie, Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement (London: Routledge, 2008).
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equal to -2 and one other condition is met: either the index is also less than 2 or the effect sizeis less
than 0.4. The bottom categoryis when the growthindex is less than -2 and the effect size s less than -
0.4. The next to bottom categoryare teachers with a growth index less than -2, but their effect size is
greaterthanor equal to-0.4.

The table below provides the color-coding, definitions, and interpretation for the Value-Added reports
of teachers.

Table 3: Teacher Value-Added Categories, Definitions, and Interpretations

Category Definition Interpretation
Level 4, Index is greaterthanor equal to Level 4, Exceeds: Significant evidence that the
Exceeds 2 and the effect sizeis greater ~ teacher's students made more progress thanthe
than or equal to 0.40 growth standard and the effect size is medium or
higher

Index is greaterthanor equal to Level 3, Met: Evidence that the teacher's students

-2 and eitherthe index is less made progress similar tothe growth standard
than 2 or the effect sizeis less

than 0.4.

Index is less than -2 and the Level 2, Nearly Met: Significant evidence that the
effect sizeis greaterthanor teacher's students made less progress thanthe
equal to-0.4. growth standard but not less than a negative

medium effect size

Level 1, Index is less than -2 and the Level 1, Not Met: Significant evidence that the
Not Met effect sizeis less than -0.4. teacher’s students made less progress thanthe
growthstandardand less growththan a negative
medium effect size

NOTE: When an indexfalls exactly on the boundary between two colors, the higher growthcoloris assigned.

4.7 Roundingand Truncating Rules

As described in the previous section, the effectiveness level is based on the value of the growthindex.
As additional clarification, the calculation of the growthindex uses unrounded values for the value-
added measures andstandard errors. After the growthindex has been created but before the categories
are determined, the index values are rounded or truncated by taking the maximum value of the rounded
or truncated index value out to two decimal places. This provides the highest category givenany type of
rounding or truncating situation. For example, if the score was a 1.995, then rounding would provide a
higher category. Ifthe score was a -2.005, then truncating would provide a higher category. In practical
terms, this impacts only a very small number of measures.

Also, when value-added measures are combined to form composites, as described in the next section,
the rounding or truncating occurs after the final index is calculated for that combined measure.
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5 Composite Growth Measures

Updated teacherreports have notbeen released yet, so this section describes composites available
through the 2019-20schoolyear.

A composite combines growth measures from different subjects, grades, and/or years for anindividual
teacher. Teacher reporting is available for the M-STEP Math and ELA assessmentsand PSAT 8/9 in grade
8 as well as MAP Math and Reading in grades 1-8. It is not available for the other PSAT and SAT
assessmentsbecause theyare not course-specific and tend to assess general content knowledge that
would be covered in several courses at the high school level. Teacher reporting is available for the 2017-
18 and 2018-19 school years for state summative assessmentsand for the 2017-18, 2018-19, and 2019-
20 (MQY) school years for MAP.

Teachers will receive a composite if they have teacher reporting available for the most recent year of
reporting (2018-19 for state summative assessmentsand 2019-2020 [MQOY] for MAP assessments).
Depending on what is available for the teacher, the following composites are available:

e Subject-specific composite across grades for a given type of test, such as:
e Uptothree-year M-STEP Mathfor grades 4—-7 and PSAT 8/9 in grade 8
e Uptothree-year M-STEP ELA for grades 4-7 and PSAT 8/9 in grade 8
e Uptothree-year MAP Math for grades 1-8
e Uptothree-year MAP Reading for grades 1-8
e Overall composite across subjects and grades for a given type of test, suchas:
e Uptothree-year M-STEP Mathand ELA for grades 4—7 and PSAT 8/9 in grade 8
e Uptothree-year MAP Mathand Reading for grades 1-8

Note that these composites are based on one type of assessment, state summative or MAP, not both
combined. Based on MDE policy, these composites will include up-to-three years of growth data. Ifa
teacheronly has one year of growth data for the most recent year, then that teacher’s composite only
includes growth data from that single year.

The key policy decisions for combining growth measures can be summarized as follows:

e A composite is weighted by the number of “full-time equivalent” students associated with each
individual growth measure for the type of assessment (state summative or MAP).

e For each teacher, the full-time equivalent (FTE) number of students is based on the number of
students linked to that teacher as well as the percentage of instructional time the teacher has
for each student. For example, if a teacher taught 26 students for 50% of their instructional
time, then the teacher’s student FTE number would be 26 students times 50% of their
instructionallearning time, or 13 students.

e Typically, this growth is combined within a year first and then across years.

e The across-year measures are alsoweighted by the student FTE number.

The following sections show how a composite is calculated for a sample teacher.
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5.1 Teacher Composites

5.1.1 Overview

The key steps for determining a teacher’s composite index are as follows:

Calculate the gain across grades and subjects for a given year.

Calculate the standard error across grades and subjects for a given year.
Calculate the composite gain across years.

Calculate the composite standard error across years.

Calculate the composite index across years.

6. Calculate the composite effect size across years.

vkhwWwnNPE

If a teacher does not have multiple years of value-added measures, then the composite index would be
basedon the single-year composite index.

The following sections illustrate this process using value-added measures from a sample teacher, which
are provided in Table 4.

Table 4: Sample Teacher Value-Added Information

Year Subject Grade Growth  Standard Index Std. Effect Numberof
Measure Error Dev. Size FTE

Students

2019 Math 6 3.30 0.70 4.71 11.0 0.30 25
2019 ELA 6 -1.10 1.00 -1.10 10.0 -0.11 23
2021 Math 6 1.70 0.65 2.62 10.5 0.16 27

5.1.2 Technical Description of the Composite Index Based on Gain Model Measures

The composite index for the gain model growth measures is calculated by dividing the composite gain by
its composite standard error. The calculations for each of these metrics are provided below.

5.1.2.1 Calculate Gain Across Grades andSubjectsfora Given Year

Because all growth measures from the gain-based model are in the same scale (Normal Curve
Equivalents), the teacher composite gain across the two applicable subject/grades is a weighted average
of the individual gains based on the number of effective students in each subject and grade. For the
teacher, the total number of FTE students affiliated with gain-based growth measures in 2019 is 25 + 23,
or 48. The 2019 grade 6 Math value-added measure would be weighted at 25/48, the 2019 grade 6 ELA
value-added measure would be weighted at 23/48. More specifically, the composite gainis calculated
using the following formula:

2019 C Gain = 25M h 23ELA —25(330) 23( 1.10) = 1.19 (20)
omp am—48 at 6+48 6 = 2> +48—. = 1.
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5.1.2.2 Calculate Standard Error Across Gradesand Subjects for a Given Year

5.1.2.2.1 TechnicalBackground onStandardErrors

The standarderror of the gain-based teacher composite gain cannot be calculated using the assumption
that the gains making up the composite are independent. This is because many of the same students are
likely representedin different value-added gains, suchas grade 6 Mathin 2019 and grade 6 ELA in 2019.
The statistical approach, outlined in Section 3.1.3 (with references), is quite sophisticated and will
consider the correlations between pairs of value-added gains as shown in equation (21) below and using
equation (10) for teachers.® The composites are indeed linear combinations of the fixed effects of the
models and can be estimated as described in Section 3.1.3. The magnitude of each correlation depends
on the extent to which the same students are in both estimates for any two subject, grade, and year
estimates.

5.1.2.2.2 lllustration of Gain-Based Standard Error for Sample Teacher

As a reminder, the use of the word “error” does not indicate a mistake. Rather, growth/value-added
models produce estimates. The growth measures in the above tables are estimates of the teacher’s true
value-added effectiveness based on student test score data. Instatistical terminology, a “standard
error” is a measure of the uncertaintyin the estimate, providing a means to determine whether an
estimate is decidedly above or below the growth expectation. Standard errors can, and should, also be
provided for the composite gains that have been calculated.

Statistical formulas are often more conveniently expressedas variances, andthis is the square of the
standard error. Standard errors of composites can be calculated using variations of the general formula
shown below. To maintain the generality of the formula, the individual estimates inthe formula (think of
them as value-added gains) are simply called X, Y, and Z. Ifthere were more than or fewer thanthree
estimates, the formula would change accordingly. As gain-based composites use proportional weighting
according to the number of FTE students linked to each value-added gain, each estimate is multiplied by
a different weight: a, b, or c.

Var(aX + bY +cZ) = a?Var(X) + b*>Var(Y) + c?Var(2)
(21)
+2ab Cov(X,Y) + 2ac Cov(X, Z) + 2bc Cov(Y,Z)

Covariance, denoted by Cov, is a measure of the relationship betweentwo variables. It is a function of a
more familiar measure of relationship, the correlation coefficient. Specifically, the term Cov (X,Y) is
calculated as follows:

Cov(X,Y) = Correlation(X,Y)\/Var(X)\/Var(Y) (22)
The value of the correlation ranges from -1 to +1, and these values have the following meanings:

e Avalue of zeroindicates no relationship.
e A positive value indicates a positive relationship, or Y tends to be larger when X is larger.

® For more details about the statistical approach to derive the standard errors, see, for example, Ramon C. Littell, George A. Milliken, Walter W.
Stroup, Russell D. Wolfinger, and Oliver Schabenberger, SAS for Mixed Models, Second Edition (Cary, NC: SAS Institute Inc., 2006). Another
example: Charles E. McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models (Hoboken, NJ: Wiley, 2008).
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e A negativevalue indicates a negative relationship, or Y tends to be smaller when X is larger.

Two variables that are unrelated have a correlation and covariance of zero. Such variables are said to be
statisticallyindependent. Ifthe X and Y values have a positive relationship, then the covariance will also
be positive. As a generalrule, two value-added gain estimates are statisticallyindependent if they are
based on completely different sets of students.

For our sample teacher’s composite gain, the relationship will generally be positive, and this means that
the gain-based composite standarderror is larger than it would be assuming independence. Using the
student weightings and standard errors reportedin Table 4 and assuming totalindependence, the
standard error would then be as follows:

25\° 23)\2
2018 Comp SE = (E) (SE Math6)2+<E;> (SE ELAg)?

= (1—2)2(0.70)2 + (g)z (1.00)2 = 0.60

At the other extreme, if the correlation between each pair of value-added gains had its maximum value
of +1, the standard error would be larger.

In this example, since the teacher teaches the same grade in different subjects, the actual standard error
will likely be above the value of 0.60 due to students being in both Math and ELA with the teacher. The
specific value will depend on the values of the correlations across the two gains. Correlations of gains
across years might be positive or slightly negative since the same student’s score can be used in multiple
gains if a teacher has taught that student multiple times. The magnitude of each correlation depends on
the extent to which the same students are in both estimates for any two subject/grade/year estimates.

For the sake of simplicity, let us assume the actual standard error was 0.65 for the teacher composite in
this example.

5.1.2.3 Calculate Composite Gain Across Years

The next stepis to calculate the gain for students across time for this teacher. The composite gain would
be found by taking the weighted average of year’s gain as follows:
48 27 27

. . . 48
Comp gain = Z£9@inz019 + 52 gaiNz021 = ﬁ(l.l‘)) +%(1.70) =1.37 (24)

Although some of the values in the example were rounded for display purposes, the actual rounding or
truncating only occurs after all of measures have been combined, as describedin Section 4.7.

5.1.2.4 Calculate Composite Standard Error Across Years

The calculations above provide the composite gain across years. Then we have a standard error for each
year. These can be combined to create a standard error for the composite gain. Assuming independence
across time and using the student weightings and single-year standard errors, the multi-year standard
error would then be as follows:

Page 35



2 2

(0.60)2 + (27) (0.65)2 = 0.45

2

Comp SE = \/(48) (SE2019)? +(27> (SE2021)% = \/(48>

5.1.2.5 Calculate Composite IndexAcross Years

The next stepis to calculate the teacher composite index, which is the teacher composite value-added
gain divided by its standard error. The gain-based composite index for this teacher would be calculated
as follows:

Comp Gain 1.37

Comp Index Comp SE ~ 045 3.04 (24)

Although some of the values in the example were rounded for display purposes, the actual rounding or
truncating only occurs after all of measures have been combined as described in Section 4.7.

5.1.2.6 Calculate the Composite Effect Size Across Years

To calculate the effect size for the overall composite, each growth measure is divided by the student-
level standard deviation of growth. This value is a constant within each year subject and grade but can
be different across the different year, subject, and grades. The composite effect size is a weighted
average of the effect sizes based on the FTE number of students.

25 23 27
%Mathzow6 75 ELAzow6 ﬁMathzom6 (25)

:—(030)+—( 0.11) + —(016)—012

Comp Ef fect Size =

5.1.2.7 Categorizing Growth Measuresas a Final Step

With the combined composite growthindex and effect size, the specific composite can be categorized.
This growth index is above 2.00. The effect size is below 0.40. Therefore, based on Section 4.6, the
teacher composite would fall into Level 3 or Met.
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6 Input Data Used in the Michigan Growth Model

6.1 Assessment Data Used in Michigan

For the analysis and reporting based on the 2020-21 school year, EVAAS received the following
assessmentsfor usein the growth and/or projection models:

e M-STEP English Language Arts (ELA) and Mathematics ingrades 3-7

e M-STEP Science in grades 5, 8,and 11

e M-STEP Social Studies in grade 5, 8, and 11

e PSAT 8/9 in Mathematics and ELAin grade 8

e PSAT 8/9 in Mathematics, Evidence-Based Reading and Writing in grade 9
e PSAT 10 in Mathematics, Evidence-Based Reading and Writing in grade 10
e SAT in Mathematics, Evidence-Based Reading and Writing in grade 11

These assessmentsare administeredin the spring semester of the school year.

EVAAS received interim/benchmark assessments from districts that opted to submit them for teacher
value-added reporting through MiDataHub, and the following assessments met the criteria for
assessmentsin Section 7.1 as well as minimum number requirements in Section 7.3.2:

e MAP Mathematicsingrades 1-8
e MAP Readingin grades 1-8

These assessmentsare administered each year at the beginning of year (BOY), middle of year (MOY) and
end of year (EQY). BOY includes test scores from August through October, MOY includes test scores
from December through February, and EQY includes test scores from Marchthrough June. Note that, for
the 2019-20 school year, only BOY and MOQY are available.

State assessment files from MDE provided the following data for each student score:

e Scale score

o Testtaken

e Testedgrade

e Testedsubject

e Testedsemester

o Tested performance level

e Full AcademicYear designation

e Educational Entity Master District code
e Educational Entity Master District name
e Educational Entity Master School code
e Educational Entity Master School name

Some of this information, such as performance levels, is not relevant to PSAT or SAT tests.

Interim/benchmark assessment files from the MiDataHub provided the following endpoints and
required data elements:

e academicSubjectDescriptors
e codeValue
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description/shortDescription
namespace

assessments

assessmentldentifier
namespace
assessmentFamily
assessmentForm
assessmentTitle
assessmentVersion
academicSubjectDescriptor
gradelevelDescriptor

gradelevelDescriptors

codeValue
description/shortDescription
namespace

schools

schoolld

nameOflnstitution

operationalStatusDescriptor

schoolTypeDescriptor

shortNameOflnstitution

localEducationAgencyld
educationOrganizationldentificationSystemDescriptor
identificationCode

studentAssessments

studentAssessmentldentifier

administrationDate

administrationEndDate
administrationLanguageDescriptor
whenAssessedGradelevelDescriptor
assessmentldentifier

namespace

schoolYear

studentUniqueld
performancelevels.assessmentReportingMethodDescriptor
performancelevelDescriptor

performancelLevelMet
scoreResults.assessmentReportingMethodDescriptor
scoreResults.resultDatatypeTypeDescriptor
scoreResults

students

studentUniqueld
birthDate
firstName
lastSurname
middleName
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e studentSchoolAssociations
e entryDate
e entryGradelevelDescriptor
e exitWithdrawDate
e schoolReference.schoolld
e schoolYearTypeReference.schoolYear
e studentUniqueld

More information about these endpoints is available in the Ed-Fi Operational Data Store API.

6.2 StudentInformation

Student information is used in creating the web application to assist educators analyze the datato
inform practice and assist all students with academic growth. SAS receives this information in the form
of various socioeconomic, demographic, and programmatic identifiers provided by MDE. SAS received
the following student information and identifiers from MDE:

e Gender (Male, Female, Unknown)

e Race
e AmericanIndian or Alaska Native
e Asian

e Blackor African American
e Hispanicor Latino
e Native Hawaiian or Other Pacific Islander
e Two or More Races
e Unknown
e  White
e Economically Disadvantaged (Y, N) — only reported at aggregate levels
o EnglishLearner(Y, N)
e Special Education (Y, N)
e Homeless (Y, N)—only reported at aggregate levels

6.3 TeacherInformation

Itis possible for Michigan educators to receive Teacher growth reports from EVAAS. To provide these
reports, SAS must receive teacher information from the MiDataHub to use in conjunction with MDE’s
student assessment data and the local interim/benchmark assessment data. This is necessarysince the
EVAAS models estimate the teacher growth measures for the group of students that are connected to a
teacherin a given subject and grade. Toreceive this information, districts, and/or ISDs must opt in to
share MiDataHub data with SAS.

6.3.1 Data Used for Teacher-Student Linkages

The MiDataHub project contains different data tables for various purposes. EVAAS uses the following
tables to obtain data for teacher-student linkages and/or identify the name and code of the district:

e schools
e students
e studentSectionAssociations
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e staffSectionAssociations

e staffs

e courses

e courseOfferings
academicSubjectDescriptors

e classroomPositionDescriptors

e CalendarDates

e Schools

e LocalEducationAgencies

The last three tables are only used to validate the district during the opt-in process.

Within these endpoints, SAS uses the following elements:

e academicSubjectDescriptors
e codeValue
e namespace
e description/shortDescription
e classroomPositionDescriptors
e codeValue
e namespace
e shortDescription
e courseOfferings
e localCourseCode
e localCourseTitle
e courseCode
e schoolld
e schoolYear
e sessionName
e courses
e courseCode
e courseTitle
e academicSubjectDescriptor
e schools
e schoolld
e nameOfinstitution
e operationalStatusDescriptor
e schoolTypeDescriptor
e shortNameOflnstitution
e localEducationAgencyld
e educationOrganizationldentificationSystemDescriptor
e identificationCode
o staffs
e staffUniqueld
e firstName
e lastSurname
e electronicMailAddress
e electronicMailTypeDescriptor
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e staffldentificationSystemDescriptor
e identificationCode

e staffSectionAssociations

e beginDate

e endDate

e classroomPositionDescriptor

e teacherStudentDataLinkExclusion
e localCourseCode

e schoolld

e schoolYear

e sectionldentifier

e sessionName

e staffUniqueld

e students

e studentUniqueld

e birthDate

e firstName

e lastSurname

e middleName

e studentSectionAssociations

e beginDate

e endDate

e teacherStudentDataLinkExclusion
e localCourseCode

e schoolld

e schoolYear

e sectionldentifier

e sessionName

e studentUniqueld

6.3.2 Assigning Subject Areas

EVAAS uses the “localCourseTitle” element fromthe “courseOfferings” and “courses” endpoints to
categorize courses as either Math or ELA for the state assessments. EVAASalso references the available
subject area descriptions via the “AcademicSubjectDescriptors” endpoint and retains all records with
subject areas relevant to our assessment pool (ELA/MATH).

Below are some examples of the values EVAAS looks for to identify the subject area that a coursefalls
into. This list is not exhaustive.

e Mathematics: MATH, MTH, ALGEBRA, ALG, GEOMETRY
e EnglishLanguage Arts: English, ELA, LANGUAGE ARTS, LANG ARTS, READ, LIT, LARTS, LA

If EVAAS was not able to find teacher data for assessments for an entire grade in a school, the course
names that were received for these students were reviewed. In these cases, course names such as
“Homeroom” or “GRADE 4” are categorized as both Math and ELA since these were most likely self-
contained classrooms.
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If courses were not categorized as either Math or ELA, corresponding records were dropped. Course
names that were not categorizedinto either subject area were excluded. For example, course names
that only referenced “Spelling,” “Grammar,” or “Writing” were not included.

6.3.3 Calculating Instructional Responsibility

EVAAS uses the student and teacher start and end dates to calculate how much of a student’s
instruction in a subject each teacher that interacted with that student is responsible for.

Percentages of instructional responsibility are based on two things:

e The number of days a teachertaught a student in a tested subject compared to the total
number of days the student was enrolled in the subject.
e The number of teachers whotaught the student.

Capturing the proportion of instructional responsibility for each teacher at the individual student level
ensures EVAAS Teacher Value-Added reports link student growth to teachers fairly and accurately.

When calculating instructional responsibility, EVAAS uses the start and end dates for a student and
teacher to determine how long a teacher provided instructionto a student in a course/subject. A
student appears on ateacher’s rosterif the student’s start and end dates overlap with the teachers.

If a student appears on multiple teachers’ rosters for the same subject at the same time, instructional
responsibility is split across the teachers. Here are two scenarios:

e Bobby isin ayear-long grade 5 Math course, and Mrs. Smithis the only teacher of record for
that course for all the days that Bobby is in that class. Mrs. Smith's instructional responsibility is
100%.

e Two teachers co-teach Bobby’'s year-long grade 5 Math course for the entire year. Each teacher
has 50% instructional responsibility for Bobby.

In addition, EVAAS calculates the proportion of the school year each student received instruction in the
tested subject. Ifa student was not enrolled for the entire school year, EVAAS adjusts the teacher’s
instructional responsibility to reflect the student’s shortened instructiontime. For example:

e Bobby’s family moves tothe area, and he enrolls in Mrs. Smith’s year-long grade 5 Math course
on the 45t day of the 180-day school calendar. Because he was in the class for 135 days and
Mrs. Smith has 100% instructional responsibility, Mrs. Smith has 75% of the instructional
responsibility for him.

e Bobby’s family moves tothe area, and he enrolls in Mrs. Smith and Mr. Jones’ split year-long
grade 5 Math course on the 45t day of the 180-day school calendar. Because he was in the class
for 135 days and he splits his time with Mrs. Smith and Mr. Jones, eachteacher has 37.5% of the
instructional responsibility for him.

e Mrs. Smith was hired to replace Mr. Jones on the 90t day of the 180-day school calendar. Mrs.
Smith and Mr. Jones have 50% instructional responsibility for the class.

Other business rules that affect the linkage data include:

o [fateacher’sstartandend dates are not populated, EVAAS uses the start and end dates for the
student that the teacheris connected to.

e Courses that fall under the umbrella of Math or ELA are linked to the corresponding students’
test scores. However, if a student is linked to both a general grade-level Mathteacherand a
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6.3.4

Geometryteacher, EVAASonly links that student to the general grade-level Mathteacher. If no
general Mathteacher exists, EVAASlinks the student to the Geometryteacher.

For courses that fall under the umbrella of Math or ELA, EVAAS attributes students’ enrollment
to their assessments. This means that the instructional responsibility for a student is split across
multiple teachers if a studentis enrolled in multiple ELA courses simultaneously.

EVAAS excludes courses that are not discernable as Math or ELA from analysis. There are
exceptions to this exclusion rule for districts, schools, and grades that have very low linkage
rates orin cases where the courses table can be used to manually verify the subject area
correctlyindicates ELA or Mathematics.

Records Dropped in Initial Processing for Teacher-Student Linkages

There are several reasons why student and teacher data submitted through the tables in the MiDataHub
might be removed through EVAAS' initial data processing. Some examples are listed below.

6.3.5

No live data within MiDataHub at the time of the pull for the required endpoints.

EVAAS connects data from the “students” endpoint and the “studentSectionAssociations”
endpoint using UIC (studentUniqueld). If a UICis presentin one endpoint and not the other,
then the record is incomplete and will be excluded.

The course information provided in the “studentSectionAssociations” endpoint must have
connecting course information presentin the “staffSectionAssociations” endpoint sothat a
teacherrecord and student record can be connected. If the course information is presentin one
endpoint but not the other, then those records are excluded.

If EVAAS is unable to identify these course titles referencing the “courseOfferings” or “courses”
endpoint, then these courses are dropped. This connection does not exist, and the records are
excluded. The course information presentin our “studentSectionAssociations” and
“staffSectionAssociations” endpoints must have identifiable course name information within the
“courseOfferings” or “courses” endpoint. If EVAAS is unable to identify these courses with titles
referencing the “courseOfferings” or “courses” endpoint, then these courses are dropped.

If avalue of studentUniquelD does not exist in any assessment data that EVAAS has received,
then those records are excluded.

If teacher and student dates do not overlap, then those records are removed from processing.

Combining Teacher-Student Linkages with Assessment Records

Once there is final set of teacher-student linkages, that informationis connected to the assessment
records to be used in the teacher value-added models. Students will have to meet other requirements
described in the remainder of this document to be included in the teacher’s growth measure.
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7 Business Rules

7.1 Assessment Verification for Use in Growth Models

To be used appropriately in any growth models, the scales of these assessments must meet three
criteria:

1. Thereis sufficient stretch in the scales to ensure growth can be measured for both low-
achieving students as well as high-achieving students. Afloor or ceiling in the scales could
disadvantage educators serving either low-achieving or high-achieving students.

2. Thetestis highly related to the academic standards sothat it is possible to measure growth
with the assessment inthat subject, grade, and year.

3. Thescales are sufficiently reliable from one year to the next. This criterion typically is met
when there are a sufficient number of items per subject, grade, and year. This will be monitored
each subsequent year that the test is given.

These criteria are checked annually for each assessment prior to use in any growth model, and
Michigan’s current standardized assessments meet them. These criteria are explained in more detail
below.

7.1.1 Stretch

Stretchindicates whether the scaling of the assessment permits student growthto be measured for
both very low- or very high-achieving students. Atest “ceiling” or “floor” inhibits the ability to assess
students’ growth for students who would have otherwise scored higher or lower than the test allowed.
Itis alsoimportant that there are enough test scores at the high or low end of achievement, sothat
measurable differences can be observed.

Stretch can be determined by the percentage of students who score near the minimum or the maximum
level for eachassessment.|fa much larger percentage of students scored at the maximum in one grade
than in the prior grade, then it might seemthat these students had negative growth at the very top of
the scale when it is likely due to the artificial ceiling of the assessment. Percentages for all Michigan
assessmentsare well below acceptable values, meaning that these assessments have adequate stretch
to measure value-added even in situations where the group of students are very high or low achieving.

7.1.2 Relevance

Relevanceindicates whether the test is sufficiently aligned with the curriculum. The requirement that
tested material correlates with standards will be met if the assessmentsare designedtoassess what
students are expected to know and be able to do at each grade level. More information about Michigan
academic standards can be found at the following link: https://www.michigan.gov/mde/0,4615,7-140-
28753---,00.html

7.1.3 Reliability

Reliability can be viewed in a few different ways for assessments. Psychometricians view reliability as
the idea that a student would receive similar scores if the assessment was taken multiple times. The
type of reliability is important for most any use of standardized assessments. This criterion typically is
met when there is a sufficient number of items per subject/grade/year, and this will be monitored each
subsequent year that the testis given.
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7.2 Pre-Analytic Processing

7.2.1 Missing Grade

In Michigan, the grade usedin the analyses and reporting is the tested grade, not the enrolled grade. Ifa
gradeis missing on any M-STEP or MAP assessments, thenthat record will be excluded from all analyses.
The gradeis required to include a student’s score in the appropriate part of the models and to convert
the student’s score into the appropriate NCE in the gain-based model.

7.2.2 Duplicate (Same) Scores

If a student has a duplicate score for a particular subject and tested grade in a given testing period in a
given school, then the extra score will be excluded from the analysis and reporting.

7.2.3 Students with Missing Districts or Schools for Some Scores but Not Others

If a student has a score with a missing district or school for a particular subject and grade in a given
testing period, then the duplicate score that has a district and/or school will be included over the score
that has the missing data.

7.2.4 Students with Multiple (Different) Scores in the Same Testing Administration

If a student has multiple scores in the same period for a particular subject and grade and the test scores
are not the same, then those scores will be excluded from the analysis. For MAP assessments, ifa
student has multiple scores in the same period, the BOY test score is defined as the first test date for a
student/test/subject/grade and the MOY and EQY test scores are defined as the last test date for a
student/test/subject/grade. If a student has multiple scores in the same period for a particular subject
and grade and the test scores are not the same, then those scores will be excluded from the analysis.
This is applied to state assessments and any remaining MAP assessment records that could not be
resolved by the first and last test date business rule.

If duplicate scores for a particular subject and tested grade in a given testing period are at different
schools, then both scores will be excluded from the analysis.

7.2.5 Students with Multiple Grade Levelsin the Same Subject in the Same Year

A student should not have different tested grade levels in the same subject in the same year. If that is
the case, thenthe student’s records are checked to see whether the data for two separate students
were inadvertently combined. Ifthis is the case, thenthe student data are adjusted so that each unique
student is associated with only the appropriate scores. Ifthe scores appearto all be associatedwitha
single unique student, then scores that appearinconsistent are excluded from the analysis.

7.2.6 Students with Records That Have Unexpected Grade Level Changes

If a student skips more than one grade level (e.g., moves from sixthin year 1 to ninth in year 2) or is
moved back by one grade or more (i.e. moves from fourth in year 1 to third in year 2) in the same
subject, then the student’s records are examined to determine whether two separate students were
inadvertently combined. If this is the case, thenthe student data is adjusted so that each unique student
is associated with only the appropriate scores. These scores are removed from the analysis if it is the
same student.

Page 45



7.2.7 Students with Records at Multiple Schools in the Same Test Period

If astudent is tested at two different schools in a given testing period, then the student’s records are
examined to determine whether two separate students were inadvertently combined. If this is the case,
then the student datais adjusted so that each unique studentis associated with only the appropriate
scores. When students have valid scores at multiple schools in different subjects, all valid scores are
used at the appropriate school.

7.2.8 Outliers

Student assessment scores are checked each year to determine whether they are outliers in context
with all the other scores in a reference group of scores from the individual student. These reference
scores are weighted differently depending on proximity in time tothe score in question. Scores are
checked for outliers using related subjects as the reference group. For example, when searching for
outliers for Mathtest scores on state assessments, all Math scores from state assessments are examined
simultaneously during outlier identification for the state assessments, and any scores that appear
inconsistent, giventhe other scores for the student, are flagged. Outlier identification for college
readiness assessments use all available college readiness data alongside state assessments inthe
respective subject area (e.g., Math subjects with M-STEP and PSAT tests might be used to identify
outliers with SAT).

Scores are flaggedin a conservative way to avoid excluding any student scores that should not be
excluded. Scores can be flagged as either high or low outliers. Once an outlier is discovered, that outlier
will not be used in the analysis, but it will be displayed on the student testing history on the EVAAS web
application.

This process is part of a data quality procedure to ensure that no scores are used if they were, in fact,
errors in the data, and the approach for flagging a student score as an outlier is fairly conservative.

Considerations included in outlier detection are:

e Isthe scorein the tails of the distribution of scores? Is the score very high or low achieving?

e |sthe score “significantly different” from the other scores as indicated by a statistical analysis
that compares each score to the other scores?

e |sthe scorealso “practically different” from the other scores? Statistical significance can
sometimes be associated with numerical differences that are too smallto be meaningful.

e Are thereenough scores to make a meaningful decision?

To decide whether student scores are considered outliers, all student scores are first converted into a
standardized normal Z-score. Then eachindividual scoreis compared to the weighted combination of all
the reference scores described above. The difference of these two scores will provide a t-value of each
comparison. Using this t-value, the growth models can flag individual scores as outliers.

There are different business rules for the low outliers and the high outliers, and this approach is more
conservative when removing a very high-achieving score.

For low-end outliers, the rules are:

o The percentile of the score must be below 50.
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e The t-value must be below -3.5for M-STEP grades 3—7 and PSAT 8/9 in grade 8 for Mathand ELA
and for MAP grades 1-8 for Math and Reading when determining the difference between the
scorein question and the weighted combination of reference scores (otherwise known as the
comparison score). In other words, the scorein question must be at least 3.5 standard
deviations below the comparison score. For other assessments, the t-value must be below -4.0

e The percentile of the comparison score must be above a certainvalue. This value depends on
the position of the individual scorein question but will range from 10 to 90 with the ranges of
the individual percentile score.

For high-end outliers, the rules are:

e The percentile of the score must be above 50.

e The t-value must be above 4.5 for M-STEP grades 3—7 and PSAT 8/9 in grade 8 for Mathand ELA
and for MAP grades 1-8 for Math and Reading when determining the difference between the
scorein question and the reference group of scores. Inother words, the score in question must
be atleast 4.5 standard deviations above the comparison score. For other assessments, the t-
value must be above 5.0.

e The percentile of the comparison score must be below a certainvalue. This value depends on
the position of the individual scorein question but will need to be at least 30 to 50 percentiles
below the individual percentilescore.

e There must be at least three scores in the comparison score average.

7.2.9 Linking Records over Time

Eachyear, EVAAS receives data files thatinclude student assessment data and file formats. These data
are checked each year prior to incorporation into a longitudinal database that links students over time.
Student test data and demographic data are checked for consistencyyear to year to ensure that the
appropriate data are assigned to each student. Student records are matched over time using all data
provided by the state, and teacher records are matched over time using the Unique ID and teacher’s
name.

7.3 Growth Models

7.3.1 Students Included in the Analysis

As described in Section 7.2 (Pre-Analytic Processing), student scores might be excluded due to the
business rules, such as outlier scores.

For the gain model, all students are included in these analyses if they have assessment scoresthat can
be used. The gain model uses all available M-STEP and PSAT 8/9 in grade 8 for Math and ELA results for
each student for M-STEP growth measures and all available MAP Math and Reading results for MAP
growth measures. For the M-STEP growth measures, student scores are excluded if they are flaggedto
indicate that they did not meet Full Academic Year. MAP scores are excluded if thereis not a BOY and an
EQY score for the reporting year (or a BOY and an MOY score for 2019-20 reporting).

Because this model follows students from one grade to the next and measures growth as the changein
achievement from one grade to the next, the gain model assumes typical grade patterns for students.
Students with non-traditional patterns, such as those who have been retained in a grade or skipped a
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grade, are treated as separate students in the model. In other words, these students are still included in
the gain model, but the students are treated as separate students in different cohorts when these non-
traditional patterns occur. This process occurs separately by subject since some students can be
acceleratedin one subject and not in another.

For the predictive and projection models, a student must have at least three valid predictor scores that
can be used in the analysis, all of which cannot be deemed outliers. (See Section 7.2.8 on Outliers.)
These scores can be from any year, subject, and grade that are usedin the analysis. In other words, the
student’s expected score canincorporate other subjects beyond the subject of the assessment being
used to measure growth. The required three predictor scores are needed to sufficiently dampen the
error of measurement in the tests to provide areliable measure. Ifa student does not meet the three-
score minimum, then that student is excluded from the analyses. Itis important to note that not all
students have to have the samethree prior test scores; they only have to have some subset of three
that were usedin the analysis. Unlike the gain model, students with non-traditional grade patterns are
included in the predictive model as one student. Since the predictive model does not determine growth
based on consecutive grade movement on tests, students do not need to stayin one cohort from one
year to the next. That said, if a student is retained and retakes the same test, then that prior score on
the same test will not be used as a predictor for the same test as a response in the predictive model.
This is mainly due to the fact that very few students used in the models have a prior score on the same
test that could be usedas a predictor. In fact, in the predictive model, it is typically the case that a prior
testis only considered a possible predictor when at least 50% of the students usedin that model have
those prior test scores. Student scores are excluded from the predictive model if they are flaggedto
indicate that they did not meet Full Academic Year. There are no membershiprules used to include or
exclude students in the PSAT 8/9 in grade 9, PSAT 10, SAT and MAP analyses.

7.3.2 Minimum Number of Students to Receive a Report

The growth models require a minimum number of students in the analysis in order for districts, schools,
and teachers toreceive a growth report. This is to ensure reliable results.

7.3.2.1 Districtand SchoolModel

For the gain model, the minimum student count to report an estimated average NCE score (i.e., either
entering or exiting achievement) is seven students in a specific subject, grade, and year. To report an
estimated NCE gain in a specific subject, grade, and year, there are additional requirements:

e Ofthose students who are associated with the school or district in the current year and grade,
there must be at least sevenstudents in each subject, grade, and yearin order for that subject,
grade, and year to be used in the gain calculation.

e Thereisatleastone student atthe school or district who has a “simple gain,” which is based on
a valid test scorein the current year and grade as well as the prior yearand gradein the same
subject. However, due to the rule above, it is typically the case that at least seven students have
a “simple gain.” In some cases where students only have a Math or Reading score in the current
year or previous year, this value dips below seven.

e For any district or school growth measures based on specific student groups, the same
requirements described above apply for the students in that specific student group.
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For example, to report an estimated NCE gainfor school A in M-STEP Math grade 5 for this year, there
must be the following requirements:

e There must be at least seven fifth-grade students with an M-STEP Math grade 5 score at school
A for this year.

e Ofthe fifth-grade students at school A this year in all subjects, not just Math, there must be at
least sevenstudents with an M-STEP Math grade 4 score from last year.

e At least one of the fifth-grade students at school A this year must have an M-STEP Mathgrade 5
score from this year and an M-STEP Math grade 4 score from last year.

For the predictive model, the minimum student count to receive a growth measureis seven students in
a specificsubject, grade, and year. These students must have the required three prior test scores
needed to receive an expectedscore in that subject, grade, and year.

7.3.2.2 Teacher Model

The teacher gain model/ includes teachers who are linked to at least seven students with a valid test
scorein the same subject, grade, and year. This requirement does not consider the percentage of
instructional time that the teacher spends with each student in a specific subject and grade.

Toreceive a Teacherreportin a particular year, subject, and grade, there is an additional requirement. A
teacher must have at least five Full Time Equivalent (FTE) students in a specific subject, grade, and year
for the state assessmentsorin a specific subject, grade, and semester for the MAP assessment. The
teacher’s number of FTE students is based on the number of students linked to that teacherand the
percentage of instructional time the teacher has for each student. For example, if a teacher taught 10
students for 50% of their instructional time, then the teacher’s FTE number of students would be five,
and the teacher would not receive a teacher growthreport. If another teacher taught 14 students for
50% of their instructional time, then that teacher would have seven FTE students and would receive a
teacher growthreport. The instructional time attribution is obtained from the student-teacher linkage
data described in Section 6.3.

The teacher gain model has an additional requirement. The teacher must be linked toat least seven
students with prior test score data in the same subject, and the test data can come from any prior grade
as long as they are part of the student’s regular cohort. One of these seven students must have a “gain,”
meaning the same subject prior test score must come from the immediate prior year and prior grade for
state assessmentsor the beginning of year semester of the current year and grade for MAP
assessments. Students are linked to a teacher based on the subject area taught and the assessment
taken. Students that have no prior testing data in the same subject area are not linked to the teacher for
the analysis. Note that if a student repeats a grade, then the prior test data would not apply as the
student has started a new cohort.

7.4 Student-TeacherLinkages

Student-teacher linkages are connected to assessment data based onthe subject and identification
information describedin Section 6.3. The model will make adjustments tolinkages if a student is claimed
by teachers at a total percentage higher than 100% in an individual year, subject, and grade. If over-
claiming happens, then the individual teacher’s weight is divided by the total sum of all weights to
redistribute the attribution of the student's test scores across teachers. Underclaimed linkages for
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students are not adjusted because a student can be claimed less than 100% for various reasons (such as
a student who lives out of state for part of the year).
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